
Let Them Use Fortran

Code generation and optimisation with PSyclone

Andrew Porter and Rupert Ford

STFC Hartree Centre

Contents

Background: the LFRic Project

Portable Performance

Separation of Concerns

Domain-Specific Language

PSyclone

Transformations

(fparser)

Summary

2

Background: The LFRic Project

• Met Office project to develop a

replacement for the Unified Model

• Named in honour of Lewis Fry

Richardson (first numerical weather

‘prediction’)

• Using GungHo recommendations:

• Cubed-sphere mesh

• Mixed finite-element scheme

• Aims to be at least as ‘good’,

scientifically as the UM

• Achieve good performance on

current and future supercomputers

Hardware vs. Software

• The UM has ~1M lines of code

• Has a flat performance profile

optimising it is very labour intensive

• Has outlasted many, many generations of

supercomputer

Porting it to a new architecture that may only

be around for a few years is not feasible

Hardware is “soft”

Software is “hard”

Separation of Concerns

Separate the Natural Science (meteorology) from
the Computational Science (performance):

Algorithm

Kernel

Parallel System
Computational

Science

Natural

Science

"PSyKAl"

5

Finite element/volume/difference-specific

• Time-stepping

• Operations over a mesh

• Typically same operation at each
element/volume/point

• Data parallel (typically independent operations)

• Nearest neighbour communications for stencils

• Global reduction(s) for convergence and/or
conservation

 6

Domain-specific knowledge

Knowledge provided via
kernel meta-data

7

type , extends(kernel_type) :: compute_cu

 type (arg), dimension(3) :: meta_args = &

 (/ arg(WRITE, CU, POINTWISE) , & ! C U

 arg(READ, CT, POINTWISE), & ! P

 arg(READ, CU, POINTWISE) & ! U

 /)

 integer :: ITERATES_OVER = INTERNAL_PTS

 integer :: index_offset = OFFSET_SW

contains

 procedure, nopass :: code => compute_cu_code

end type compute_cu

8

Given domain-specific

knowledge and information

about the Algorithm and

Kernels, the Parallel System

layer can be generated...

...by

Generating the Parallel
System Layer with PSyclone

• A domain-specific compiler for embedded DSL(s)

• Finite Difference, Finite Element

• Fortran -> Fortran

• Supports distributed- and shared-memory

parallelism

• A tool for use by HPC experts

• Hard to beat a human

• People* enjoy using tools (Linux c.f. Windows)

• Reduces programmer errors (both correctness and

performance) in implementing parallel code

• Optimisations encoded as a ‘recipe’ rather than

baked into the scientific source code

• Different recipes for different architectures

 9 *that is, RSEs

Example Algorithm

10

Single time-step for NEMOLite2D (shallow-water, finite-

difference):

Example Kernel

11

Generated PSy Layer

12

PSy layer code is generated by PSyclone, e.g.:

Each invoke has a schedule
GOSchedule [invoke= 'invoke_0 ' ,

 Constant loop bounds= True]

 Loop [type ='outer' ,field_space= 'ct ' ,

 it_space ='internal_pts ']

 Loop [type ='inner' ,field_space= 'ct ' ,

 it_space ='internal_pts']

 KernCall continuity (ssha_t,sshn_t,

 sshn_u,sshn_v,hu,hv,un,vn,

 rdt,area_t) [mod_inline= False]

 Loop [type ='outer' ,field_space= 'cu ' ,

 it_space ='internal_pts']

 Loop [type= 'inner' ,field_space= 'cu ' ,

 it_space ='internal_pts']

 KernCall momentum_u(ua,un,vn,hu,hv,ht,ssha_u,

 sshn_t,sshn_u,sshn_v,tmask,

 dx_u,dx_v,dx_t,dy_u,dy_t,

 area_u,gphiu) [mod_inline= False]

 ... 13

Schedules are manipulated
using transformations...

14

Transformation Example

15

Transformed schedule
GOSchedule [invoke= 'invoke_0' ,Constant loop bounds= True]

 Directive [OMP parallel]

 Directive [OMP do]

 Loop [type= 'outer' ,field_space= 'ct ' ,

 it_space ='internal_pts ']

 Loop [type ='inner' ,field_space= 'ct ' ,

 it_space ='internal_pts']

 KernCall continuity_code (ssha_t,sshn_t,sshn_u,

 ...,area_t)[mod_inline= False]

 Directive [OMP do]

 Loop [type ='outer' ,field_space= 'cu ' ,

 it_space ='internal_pts ']

 Loop [type ='inner' ,field_space= 'cu ' ,

 it_space ='internal_pts']

 KernCall momentum_u_code (ua,un,vn,hu,hv,

 ...,area_u,gphiu)[mod_inline= False]

 ...
16

fparser

• PSyclone uses Fortran parser from the f2py project

• Development on that project has stalled

• Removed the parser from PSyclone and created
standalone package “fparser”

• Like PSyclone, is available from github and pypi:

17

Summary
• Single source science code and performance

portability are key for maintainable high
performance software

• Separation of concerns + DSL is a potential way
forward for current architectures and a way to
prepare for future architectures

• PSyclone supports DSLs embedded in Fortran

• Finite Element (LFRic)

• Finite Difference (GOcean)

• Open development on github with use of Travis and
Coveralls

• fparser under development – contributions
welcomed!

18

Thank you for listening

PSyclone: github.com/stfc/PSyclone

fparser: github.com/stfc/fparser

